On the Triebel-Lizorkin space boundedness of Marcinkiewicz integrals along compound surfaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundedness of Marcinkiewicz integrals with mixed homogeneity along compound surfaces

*Correspondence: [email protected] 1School of Mathematical Sciences, Xiamen University, Xiamen, 361005, China Full list of author information is available at the end of the article Abstract In this note we establish the Lp boundedness of Marcinkiewicz integrals with mixed homogeneity along compound surfaces, which improve and extend some previous results. The main ingredient is to presen...

متن کامل

Boundedness of Rough Integral Operators on Triebel-lizorkin Spaces

We prove the boundedness of several classes of rough integral operators on Triebel-Lizorkin spaces. Our results represent improvements as well as natural extensions of many previously known results. 2010 Mathematics Subject Classification: Primary: 42B20; Secondary: 42B15, 42B25.

متن کامل

Boundedness of multilinear operators on Triebel-Lizorkin spaces

The purpose of this paper is to study the boundedness in the context of Triebel-Lizorkin spaces for some multilinear operators related to certain convolution operators. The operators include Littlewood-Paley operator, Marcinkiewicz integral, and Bochner-Riesz operator. 1. Introduction. Let T be a Calderon-Zygmund operator. A well-known result of Coif-man et al. [6] states that the commutator [b...

متن کامل

Boundedness of higher-order Marcinkiewicz-Type integrals

Let A be a function with derivatives of order m and DγA∈ Λ̇β (0 < β < 1, |γ| =m). The authors in the paper proved that ifΩ∈ Ls(Sn−1) (s≥ n/(n−β)) is homogeneous of degree zero and satisfies a vanishing condition, then both the higher-order Marcinkiewicz-type integral μΩ and its variation μ̃ A Ω are bounded from L p(Rn) to Lq(Rn) and from L1(Rn) to Ln/(n−β),∞(Rn), where 1 < p < n/β and 1/q = 1/p− ...

متن کامل

Marcinkiewicz integrals along subvarieties on product domains

Stein proved that ifΩ∈ Lipα(Sn−1), (0<α≤ 1), then μΩ is bounded on Lp for all 1<p ≤ 2 [18]. Since then, the study of the Lp boundedness of μΩ under various conditions on the function Ω has attracted the attention of many authors ([1, 4, 5, 7, 10, 13], among others). In particular, Chen et al. in [8] studied the Lp boundedness of μΩ under the following condition on the function Ω which was intro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Inequalities & Applications

سال: 2017

ISSN: 1331-4343

DOI: 10.7153/mia-20-35